PFAS – What we know?

Dr Tony Jong Associate Director - Geochemist

PFAS Investigations amongst Uncertainty

- PFAS chemistry
- PFAS environmental fate and transport
- Analytical detection and quantitation
- Ever changing guidelines
- Remediation Options?

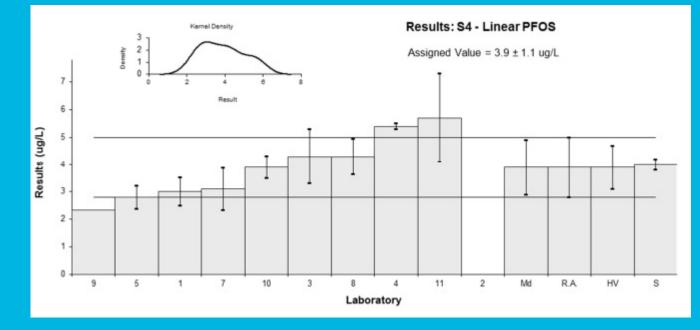
AECOM

Chemistry 101...

- Essentially class of synthetic fluorinated organic compounds with C–F bond
- Diverse range of PFAS = confusion
- Strong C-F bonding
- Persistent and resistant to degradation

1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8heptadecafluoro-1-octanesulfonic acidWhat the...?

- Perfluorinated (PFC) completely fluorinated, F– (CF₂)_n–R
- Polyfluorinated partially fluorinated,
 F(CF₂)_n– (CH₂)_m–R
- X:Y fluorotelomer, the X = number of fully fluorinated carbon atoms, Y = number of nonfluorinated carbon atoms.
- AFFF Aqueous film forming foam (surfactant)



Group	Class	Chemical Name	Abbreviation	Chemical Structure			
Perfluorinated compounds (PFC)	Perfluoroalkyl Sulfonic Acids (PFSA)	Perfluorobutane sulfonic acid	PFBS	F(CF ₂) ₄ SO ₃ H			
		Perfluoropentane sulfonic acid	PFPeS	F(CF ₂) ₅ SO ₃ H			
		Perfluorohexane sulfonic acid	PFHxS	F(CF ₂) ₆ SO3H			
		Perfluoroheptane sulfonic acid	PFHpS	F(CF ₂) ₇ SO ₃ H			
		Perfluorooctanesulfonic acid	PFOS	F(CF ₂) ₈ SO ₃ H			
		Perfluorodecane sulfonic acid	PFDS	F(CF ₂) ₁₀ SO ₃ H			
	Perfluoroalkyl Carboxylic Acids (PFCA)	Perfluorobutanoic acid	PFBA	F(CF ₂) ₃ COOH			
		Perfluoropentanoic acid	PFPeA	F(CF ₂) ₄ COOH			
		Perfluorohexanoic acid	PFHxA	F(CF ₂)₅COOH			
		Perfluoroheptanoic acid	PFHpA	F(CF ₂) ₆ COOH			
		Perfluorooctanoic acid	PFOA	F(CF ₂) ₇ COOH			
		Perfluorononanoic acid	PFNA	F(CF ₂) ₈ COOH			
		Perfluorodecanoic acid	PFDA	F(CF ₂) ₉ COOH			
		Perfluoroundecanoic acid	PFUnDA	F(CF ₂) ₁₀ COOH			
		Perfluorododecanoic acid	PFDoDA	F(CF ₂) ₁₁ COOH			
		Perfluorotridecanoic acid	PFTrDA	F(CF ₂) ₁₂ COOH			
		Perfluorotetradecanoic acid	PFTeDA	F(CF ₂) ₁₃ COOH			
	Polyfluoroalkyl sulfonamides (FSA)	Perfluorooctane sulfonamide	PFOSA	F(CF ₂) ₈ SO2NH2			
		N-ethyl perfluorooctanesulfonamido acetic acid	N-Et-FOSAA	$F(CF_2)_8SO2N(C_2H_5)CH_2CO_2H$			
		N-methyl perfluorooctanesulfonamido acetic acid	N-Me-FOSAA	F(CF ₂) ₈ SO2N(CH ₃)CH ₂ CO ₂ H			
spu		N-ethyl perfluorooctane sulfonamide	N-Et-FOSA	F(CF ₂) ₈ SO2N(C2H5)H			
Inodu		N-ethyl perfluorooctane sulfonamidoethanol	N-Et-FOSE	F(CF ₂) ₈ SO2N(C2H5)C2H4OH			
d cor		N-methyl perfluorooctane sulfonamide	N-Me-FOSA	F(CF ₂) ₈ SO ₂ N(CH ₃)H			
inate		N-methyl perfluorooctane sulfonamidoethanol	N-Me-FOSE	F(CF ₂) ₈ SO2N(CH3)C2H4OH			
Polyfluorinated compounds	Fluorotelomer Sulfonic Acids (FTS)	4:2 Fluorotelomer sulfonic acid	4:2 FTS	F(CF ₂) ₄ (CH ₂ CH ₂) SO ₃ H			
Ъ		6:2 Fluorotelomer sulfonic acid	6:2 FTS	F(CF ₂) ₆ (CH ₂ CH ₂) SO ₃ H			
		8:2 Fluorotelomer sulfonic acid	8:2 FTS	F(CF ₂) ₈ (CH ₂ CH ₂) SO ₃ H			
		10:2 Fluorotelomer sulfonic acid	10:2 FTS	F(CF ₂) ₁₀ (CH ₂ CH ₂)SO ₃ H			

ΑΞϹΟΜ

- Commercial analysis began c.2008
- Direct injection methods 0.01 ppb
- Now with pre-concentration methods 0.0003 to 0.002 ppb
- Systematic differences in results for real world samples reported by different labs.

AECOM

- Internal standardisation to correct for matrix effects/normalising recoveries on extraction had no correcting effect on the numbers reported
- Different standards used for instrument calibration was the issue
- Using linear PFAS as a standard likely to overestimate real samples containing both linear and branched PFAS isomers

- Analytical methods have out-paced toxicological studies
- Widespread detection of PFAS in the absence of health information may cause public alarm
- Total Organofluorine Combustion Ion Chromatography (TOF-CIC),
- Total Oxidisable Precursor (TOP) analysis

PFAS Fate and Transport

- PFC highly stable, soluble and very mobile, very low adsorption affinity, resists biological and chemical degradation → persistent in the environment
- Fluorinated tail not known to degrade in nature
- Some PFAS bioaccumulate (e.g. PFOS and PFOA) – not lipids, more so in blood, liver, kidney, spleen

PFAS Fate and Transport

- Polyfluorinated compounds partially degrade to perfluorinated end-point compounds (perfluoroalkyl carboxylic acids (PFCA) and perfluoroalkyl sulfonic acids (PFSA))
- Half-life (unknown?) PFOA, 2 to 235 yrs
- Generally shorter chain PFAS have shorter half-lives

Guidelines

- Still evolving
- 'Limits' to current PFAS science
- Lower guideline values, expanded analyte list,
- Human health now derived from blood serum levels
- Impacting public perception (?)

Interim Guidelines

Exposure Scenario	PFOS	PFOA	6:2 FTS	8:2 FTS	Source				
Water (µg/L)									
Drinking water	0.5	5	-	-	enHealth (2016)				
Drinking water	0.070 (PFOS + PFOA		5	0.4	USEPA (2009) USEPA (2016) Jarman <i>et al.</i> 2014				
Recreational	5	50	-	-	enHealth (2016)				
Ecological Freshwater Slightly – moderately disturbed systems (95% species protection) ³	0.13	220	-	-	Draft ANZECC (In: Government of Western Australia 2016)				
Ecological (toxicity effect on aquatic organisms)	6.66	2900	-	2900	Qi <i>et al.</i> 2011 Giesy <i>et al.</i> 2010				
Soil (mg/kg)									
Human Health (residential)	4	-	-	-	Government of Western Australia (2016)				
Human Health (Industrial/Commercial)	100	-	-	-	Government of Western Australia (2016				
Human Health Interim Screening Levels (residential, direct contact)	6	16	60	16	USEPA (2009). Jarman <i>et al.</i> 2014				
Human Health Interim Screening Levels (industrial, direct contact)	90	240	900	240	GHD (2015)				
Ecological Interim Screening Levels (EISLs) for 95% species protection, terrestrial)	0.373	3.73	-	3.73	UKEA (2009)				
EISLs (residential land use, 80% species protection, low reliability, terrestrial)	0.91				UKEA (2009)				
EISLs (commercial/industrial land use, 60% species protection, low reliability, terrestrial)	4.71				UKEA (2009)				

Site Investigation Method

- Assess if there is potential broad-based contamination problem
- Assess potential for precursors to transform to end-point PFAS
- Assess target and quantify individual PFAS
- Human health and environmental risk
 assessment
- Targeted toxicology studies

AECOM

Remediation Options

- Still evolving
- High solubility of short-chain PFAS make treatment difficult
- Limited options for treatment of soil/groundwater/ (thermal, GAC, solidification)
- No in-situ treatment really available (ScisoR?)
- Management, containment and control (?)

Thank You

The opinions expressed are those of the author and do not necessarily reflect the official views of AECOM

