

SENG Workshop 3 July 2018

Gareth M. Forde

PhD(Cantab), BE(Chem, Hons I), GCHE RPEQ (Chem & Env), CEng, CSci, FIChemE, FCCS, MAICD

> Max Barnes BE(Process, Hons I), AIChemE

The 4th 'R' - Recover

Anaerobic Digestion for Energy Recovery from Organics

Disclaimer

- The information in this presentation was prepared for the SENG "War on Waste" session on 3 July 2018.
- The information in this presentation is for illustrative purposes only and should not be used to make project, investment or financial decisions.
- The information is generic and is not applicable to specific projects and situations.
- All Energy Pty Ltd accepts no responsibility for decisions made based on the information contained in this presentation.

Waste to Energy (W2E) – Where it fits In

Source: "The role of waste-to-energy in the circular economy ", COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS, Brussels, 26.1.2017 COM(2017) 34 final.

Scope

W2E Options

- Thermal (combustion, pyrolysis, gasification, torrefaction, thermal depolymerisation)
- Biological / Biochemical (anaerobic digestion, fermentation)

Anaerobic Digestion (AD)

- EU Treatment
- Suitable Feedstocks
- Recoverable Energy
- By-products
- Implications of QLD \$70/t landfill fee

All Energy Pty Ltd personnel previous works:

Existing Facilities - Operational Optimization and Engineering Works:

- Bears Lagoon Piggery Waste to Biogas, VIC
- Melbourne Water Western Treatment Plant
- Oakey Beef Exports COHRAL system, QLD
- BE Campbell, Young NSW
- Kilcoy Pastoral Company (food manufacturing), QLD
- Audits for biogas cogeneration facilities creating renewable Energy credits (RECs) [current]

Front End Engineering Design (FEED) and Feasibility Studies:

- Brisbane Airport Authority FEED and ARENA application.
- UnityWater: feasibility screening tool for waste to energy.
- Gladstone Regional Council: FOGO and waste water sludge
- Australian Country Choice (food manufacturing), QLD
- Wood Mulching Industries, Mixed organic and green wastes, QLD
- Opal Creek Feedlot and Grain Flaking, QLD
- Kerwee Feedlot and Grain Flaking, QLD
- Trisco Foods, QLD
- Monash University, Mixed FOGO and sewer mining, VIC
- Dalby Biorefinery Pty Ltd (ethanol from grain), QLD
- Chicken industry wastes to renewable energy: scenic Rim and Western Downs, QLD
- Meat and Livestock Australia: Waste to energy throughout the red meat supply chain.
- Australian Meat Processing Corporation: Organic waste to energy.

Biomass and Waste to Energy - Options

Waste to Energy _{Tech}	Temp.	O2 Level	Gas Comp						
	°C	%	CH ₄	H ₂	CO2	CO	Primary Products	Further processing	Advantages
Torrefaction	200-320	0					Syngas, bio-char, condensables	Energy pellets	Low temp & pressure
Pyrolysis	400-650	0	9	36	7	17	Syngas, bio-char &/or bio-crude	Power; Fertilizer	Low pressure; No ash
Gasification	650-850	20	3	18	6	24	Heat, syngas, ash	Methanol, hydrogen, syn-diesel	"Clean" syngas
Combustion	850- 1000	125			11		Heat and Ash	Power	Heavy metals inert in slag / ash
Anaerobic digestion	35	0	52		48		Digested sludge, treated effluent	Fertiliser	Process wet biomass
Organic Rankine Cycle	~>80		Any heat source. Thermal oil is ideal.				Power		No fuel costs

First and Foremost – AD can be considered a recycling operation rather than recovering energy!

European Commission publication "The role of waste-to-energy in the circular economy" (2017):

"processes such as anaerobic digestion which result in the production of a biogas and of a digestate are regarded by EU waste legislation as a recycling operation"

European Commission publication "The role of waste-to-energy in the circular economy" (2017):

"Waste to energy is a broad term that covers **much more than waste incineration**. It encompasses various waste treatment processes generating energy ... each of which has different environmental impacts and circular economy potential."

"Improving the energy efficiency of waste-to-energy processes and promoting those processes which **combine material and energy recovery** can contribute to decarbonising key sectors ... and to reducing greenhouse gas emissions from the waste sector."

"Waste-to-energy processes can play a role provided that ... choices made do not prevent higher levels of prevention, reuse and recycling.

What does this mean?

- Anaerobic Digestion ranks higher on the waste hierarchy as it involves energy and material (concentrated NPK digestate) recovery
- Excellent choice for volatile waste organics

Let's look further at the technology...

AD – Feedstocks

Ideal feedstocks are:

- High "biomethane potential" as delivered: m^3 biogas per tonne delivered
- High solids content and volatile solids content (dry and fresh) as this keeps transport costs down on a \$/m^3 biogas basis.
- Organic
- Steady supply
- Examples
 - Food processing waste
 - Municipal organic waste (food scraps, green waste)
 - Grease trap waste
 - Water treatment wastes (activated sludge, DAF sludge)
 - Agri wastes and green wastes
- Waste streams are often varied and complex and should be considered on a case by case basis

Automated Feasibility SaaS Platform Tool

HOME SUB

SUBMIT YOUR BILL INFO HERE! WASTE TO ENERGY

BIOGAS TO POWER S

STEAM AND HOT WATER SOLAR PV + LI-ION BATTERY

Waste to Energy

SOLID WASTE TO ENERGY TOOL - Enter your data here:

W2E - COPYRIGHT	ALL E	NERGY P1	Y LTD 2	2018 - SC	LID WA	STE TO E	NERGY								
Basis of Analysis:	8,008 facility hours per annum (4 weeks scheduled shut down; 97% availability)														
		128,000	Populati	ion service	ed						Target N	ICV:	min	8.5.	
		90.4% % of total ash as bottom ash						Boiler efficiency			87.3%				
All Energy Pty Ltd		99.9% % volatilation DW							Gen set efficienc			. 19.1%			
2. MASS BALANC															
Stream Description		Mixed Municipal Solid Waste (MSW)		Food Organics / Waste Orgaics		Segregated Wood; Residual Waste Fuels (RWF) at 11%w/w of		Supplementary high NCV fuel (shredded and debeaded tyres) -		Gross Therm otal Fuel Energy Movi Grate		ermal loving e	Gross Electrica		
Stream #						A A		and the second s		5					
Mass Flow ww (tpa)		95,502		-		10,494		31,061		168,119					
Density (kg/m^3)		550		700		550		600		550)		11.52	MW
NCV / LHV (MJ/kg)		9.00		9.00		12.2		33.0		10.34		1,738,837	GJ pa	92.25	GWhp
Component Flows		kg/h	mass %	kg/h	mass %	kg/h	mass %	kg/h	mass %	kg/h	mass %				
SOLIDS	Mol. W	11,925		-		1,312		3,882.7							
Biomass (as delivered)		7,346	61.6%	-	100.0%	1,311.79	100%		28%	10,929	63.8%	- - -			
Dry weight		7,513.0	63%	-	26%	1,096.7	83.6%	3,858.6	99.38%	15,509					
Ash	<u> </u>	548.4	7.30%	-	15.00%	11.0	1.00%	185.6	4.81%	1,193	6.97%				
Volatile matter	VS/TS%	6,250.04	83.2%	-	91.0%	924.48	84.3%	2,587.6	67.06%	9,762					
Fixed carbon		715.2	9.5%	-	64.0%	192.8	14.7%	1,085.4	28.13%	1,993			(
C (ash free)	12.01	3,691.20	53.00%			549.36	50.60%	3,256.3	84.39%	9,046	65.49%				
H (ash free)	1.01	508.41	7.30%			69.48	6.40%	275.1	7.13%	1,043	7.55%				
O (ash free)	16	2,157.61	30.98%			455.01	41.91%	84.5	2.19%	3,472	25.13%	All Energy P			Ltd
N (ash free)	14.01	91.93	1.3%			0.87	0.08%	9.3	0.24%	128	0.93%			9/ • •/	
Chloride (Cl)	35.45	16.02	0.2%			0.22	0.02%			67	0.49%				
Sulphur (ash free)	32.07	6.96	0.1%			0.11	0.01%	47.8	1.24%	57	0.41%				
WATER (Liq or gaseous)															
H2O in feedstock	18.02	4,412.38	37%			215.13	16%	0	0.62%	5,469	32%				
	18.02														

All Energy Pty Ltd www.allenergypl.com.au

Example PFD: Biogas from organic waste

Approximately 63% of QLD landfilled MSW is biogenic

- Opportunity for AD
- Not currently
 economic to
 separate biogenic
 fraction
- Additional bins
 may be viable after
 landfilling price
 threshold

Recoverable Energy / Material

• Biogas (CH4 / CO2 / trace)

- CNG
- Pipeline
- Generation
- Co/Tri-Generation
- Concentrated NPK Digestate
 - Composting
 - Cropping

What sort of revenues does this generate?

Potential Revenues

- Feedstock
 - Under landfill levy or for particularly problematic wastes, worst case delivered for cost of transport, best case charge gate fee; and/or
 - Avoided waste management fee e.g. from a food processing facility
- Power / Thermal Offset
 - For rural business, previous work has shown value of 1 m3 of biogas as \$0.49 for boiler fuel, \$1.38 and \$0.61 for peak and offpeak power respectively
 - Much greater value in power offset
- Renewable Energy Credits from power generation

Motivation for Onsite Energy Generation

- Power
- Heating fuel
- Waste management
- Disposal options
- Waste Stewardship
- Energy & cost security

Reducing Increased pressure Increased demand

- Renewable Energy Credits
- Emissions Reduction Fund
- Gate fees

\$\$ \$ (?) <u>\$\$\$</u>

Energy - Threats and Opportunities

Threats:

- Large variability in wholesale prices
- Large variability (normally upwards) in fuel prices
- Regulatory / legislative changes e.g. carbon pricing
- Increasing waste management costs
- Development approvals and EPA

Opportunities:

- Energy security
- Disruptive fuel sources: CNG; biomass; recycled wood / pellets; biogas.
- Disruptive technologies: distributed generation, energy storage
- Businesses surrounding you also want cheap and green energy

Qld Landfill Levy

- \$1.3 billion in revenue from the levy over the next four years.
- Basis: \$70 / tonne levy on 4.64 mil tonnes of landfill pa; commencing 2019 (TBA; ~1 July).
- Govt will retain ~30%: \$390 mil over 4 years.
- ~29 to 30% "no direct impact on households": \$381 to 390 mil over 4 years.
- Balance on "waste management strategy": \$529 mil over 4 years.
- Councils would receive \$32 million worth of advanced payments in 18-19.
- \$100 mil for funding of resource recovery projects.

Q: Where is the other \$429 mil going ???

Data sources: https://www.ehp.qld.gov.au/waste/pdf/recycling-waste-qld-2017-report.pdf Rockhampton RC "Council-Ordinary-18-06-26-Agenda-Supplementary%20(1).pdf", 26 June 2018. https://www.brisbanetimes.com.au/politics/queensland

