

Institute of Environmental Studies

Engineers Australia Eminent Speaker Presentation, February-April 2015

A Sustainable Energy Future for Australia

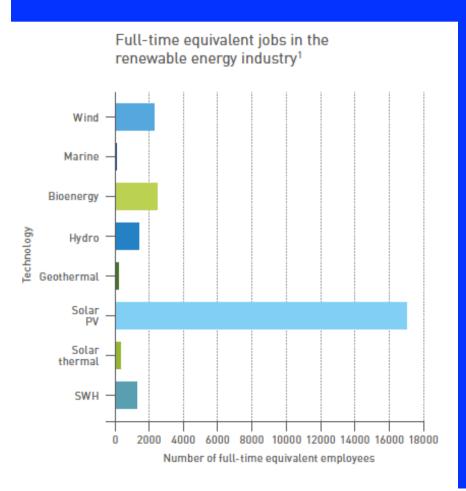
Dr Mark Diesendorf

Institute of Environmental Studies
University of New South Wales (UNSW)
Sydney, Australia

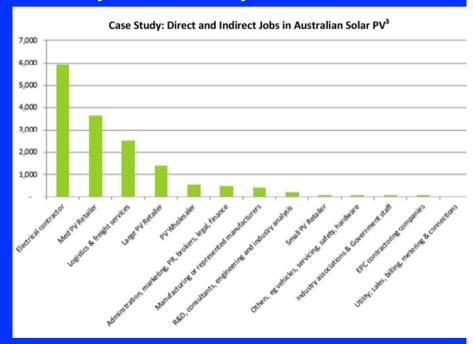
www.ies.unsw.edu.au m.diesendorf@unsw.edu.au

Additional Impacts of Fossil Fuels

- Peak in global oil production
- Peak in global coal in a few decades
- Gas prices escalating in eastern Australia
- Air pollution and respiratory diseases
- Water pollution
- Land degradation
- Few jobs in fossil fuels



Why do we need a transition?



Jobs in Renewable Energy

24,000 direct jobs in renewable energy in Australia at end 2012

Case study:: Solar PV jobs, incl. indirect

If RET is axed → huge job losses

Direct Local Jobs per Unit of Electricity Generated by Power Stations

Source of electricity	Relative number of job-years per kWh in Australia
Coal electricity + coal mining	1
Wind power with 50% Australian content	2–3
Bio-electricity with 50% Australian content	Approx. 3.5 (mostly rural)
Wind power with 80% Australian content	3.5–5

Principal source: MacGill, Watt & Passey (2002)

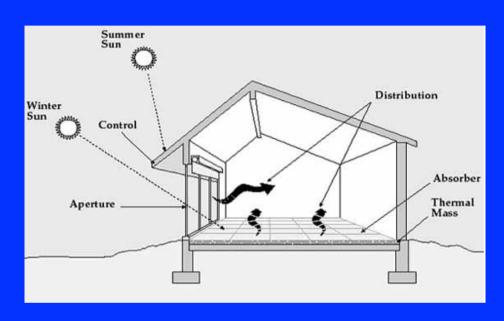
Energy Efficiency saves Energy and Money

Christie Walk, Adelaide

Water efficient shower

Ceiling fan

Heat pump hot water



LED lights

Sustainable Space Heating and Cooling

New building

Passive solar design, accepting winter sun & excluding summer sun

All residential buildings

- Insulation of ceiling and, if possible, walls and under floor
- Exclude drafts in winter
- Encourage drafts in summer
- Ceiling fans
- Efficient reverse cycle air conditioners
- Add thermal mass, especially if it can be exposed to winter sun

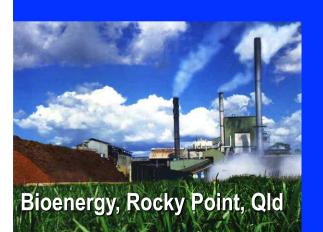
Jobs

- For energy audits, sales, Installation
- Auditors, salespersons, electricians, plumbers, IT experts, architects

How can Renewable Energy replace Fossil?

Energy end-use at present	Energy end-use	Future renewable energy contribution
Electricity Currently mostly coal		Could be supplied entirely by renewables in Australia & many countries within a few decades.
Transport Currently mostly oil		Electric vehicles for urban transport; inter-city high-speed rail; biofuels (initially) for rural vehicles & some air travel.
Heat (non-electrical) Currently mostly gas		Low temperature heating & cooling from direct solar & electric heat pumps; high temperature from renewable electricity

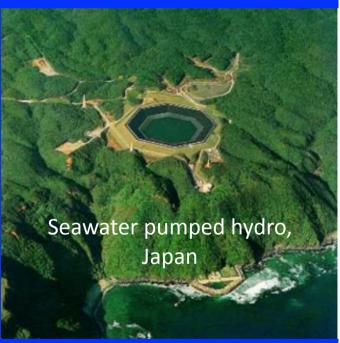
Electricity will play a greater role in heating/cooling and transport. Hence this presentation focuses on electricity.


Renewable Electricity

Wind Biomass Solar PV

Concentrated solar thermal Hydro Wave?
Ocean current?

Geothermal electricity?


Australia has the lot!

PV solar tile

Jobs in manufacturing, installation, grid connection; a few in operation & maintenance 10

Countries and States with Strong Renewable Electricity Targets

Country/state	2014 Renewable Electricity	Target
Denmark	39% from wind + bioenergy from agricultural residues	100% renewable electricity and heat by 2035; 100% transport 2050
Germany	26% from renewables.	80% renewable electricity by 2050
Scotland	35% from renewables	100% renewable electricity by 2020
China	Biggest wind capacity and solar hot water; biggest PV manufacture	15% of all primary energy from 'low-carbon' by 2020
California, usa	About 24% in total from hydro, geothermal, wind, biomass, etc	33% renewable electricity by 2020
Schleswig- Holstein, Germany	About 100% net in 2014 – mostly wind	300% under discussion

In Australia Renewable Energy is under Attack by Federal and most State Governments

- * Review of Renewable Energy Target by biased committee Reported
- Australian Renewable Energy Agency (ARENA) to be closed Announced, subject to Senate vote
- Clean Energy Finance Corporation to be closed Announced, subject to Senate vote
- **★** 20th inquiry into sham wind turbine 'syndrome' **Announced**
- * Election promise, to subsidise one million solar roofs Broken
- Most state governments removed mandatory feed-in tariffs for residential
 RE and some removed energy efficiency programs Done
- * Anti-RE myths spread by politicians & others Continuous

Vested Interests are spreading False Myths about Renewable Energy (RE)

- Myth: 'Base-load power stations, either coal or nuclear, are necessary, and RE cannot provide them'
- Myth: 'Base-load power stations must run continuously as backup for RE'
- Myth: 'RE is too variable or intermittent to make the predominant contribution to grid electricity supply'
- Myth: 'RE is too expensive'
- Myth: 'RE is too diffuse to run an industrial society'
- Myth: 'RE is not ready to replace fossil fuels'
- * Myth: 'RE is responsible for the big increases in electricity prices
- Myth: 'Wind & solar have severe environmental and health impacts'

Why the Attacks?

Renewable Electricity threatens big greenhouse gas emitting industries, state gov't revenue, & utility business models

'Merit Order Effect' at wholesale (generation) level

 Wind farms, with very low operating cost, are displacing coal-fired power stations and reducing wholesale price of electricity

'Death Spiral' at distribution/retail level

 Growth in rooftop solar PV and increased energy efficiency are reducing demand for grid electricity

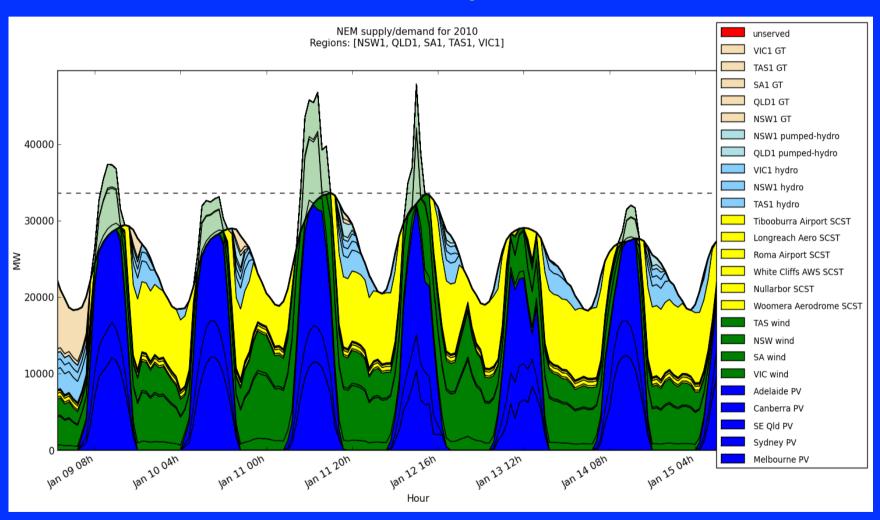
* Result

- Utilities & big business lobbying federal & state governments to stop growth in RE
- Government policies try to stop growth of RE
- False myths disseminated by malicious and lazy media

Mythbusting by Two Methods

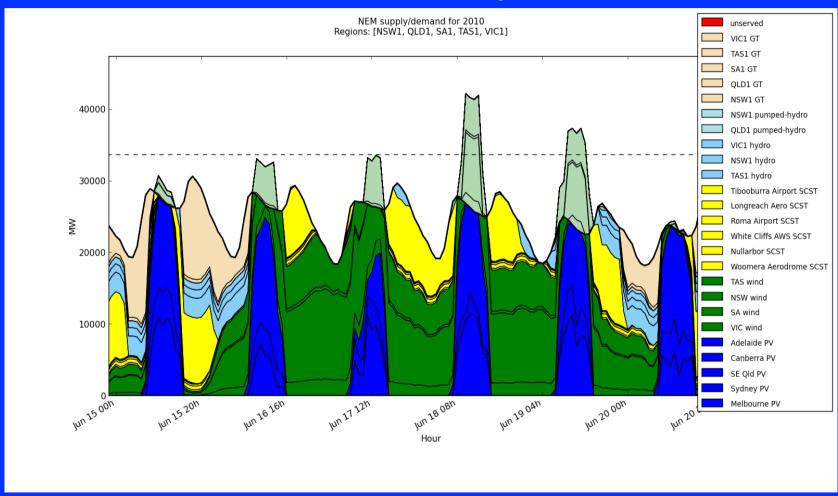
Practical experience

- Denmark: wind supplied 39% of electricity consumption in 2014
- South Australia 30% wind + 5% solar PV;
- ★ Hourly computer simulations of demand and supply by 80-100% renewable electricity in many countries
 - Over 30 studies of states/provinces, countries, regions and whole world
 - These find that renewable electricity systems can be just as reliable as conventional systems
 - Predominantly renewable electricity systems are affordable
 - Myths hostile to RE are busted


UNSW Simulation Models of 100% Renewable Electricity (RE) in National Electricity Market

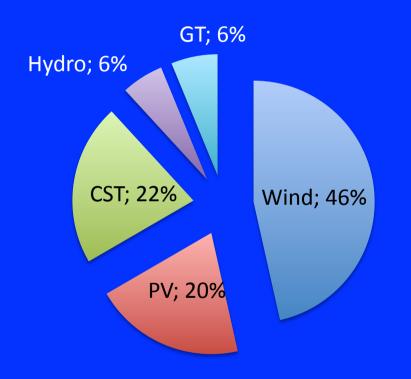
(Journal papers by Elliston, MacGill and Diesendorf 2012, 2013, 2014)

- Hourly data on electricity demand, solar & wind for NEM, initially spanning 2010
- All commercially available RE technologies scaled up
- Simulation model built by Ben Elliston: hourly time-steps through 2010, balancing supply and demand; maintaining reliability
- Cost projections to 2030 by BREE (2012)
- Economic optimal mix evaluated
- Simplified transmission model
- Comparison fossil fuelled scenarios



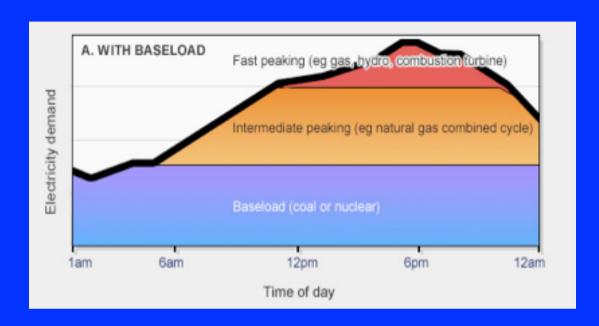
Supply and Demand for a Typical Week in Summer 2010 – Optimal Mix of RE

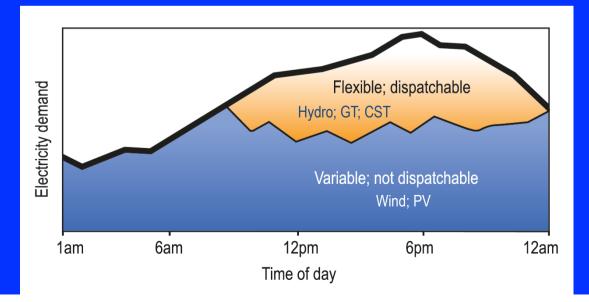
In summer, negligible gas turbine energy used.


Supply and Demand for a more Challenging Period in Winter 2010 – Optimal Mix of RE

In calm winter evenings following cloudy days, gas turbines & demand management are important.

100% RE Least-Cost Energy Generation Mix 2030 projected costs by BREE


5% Discount Rate; no extra transmission

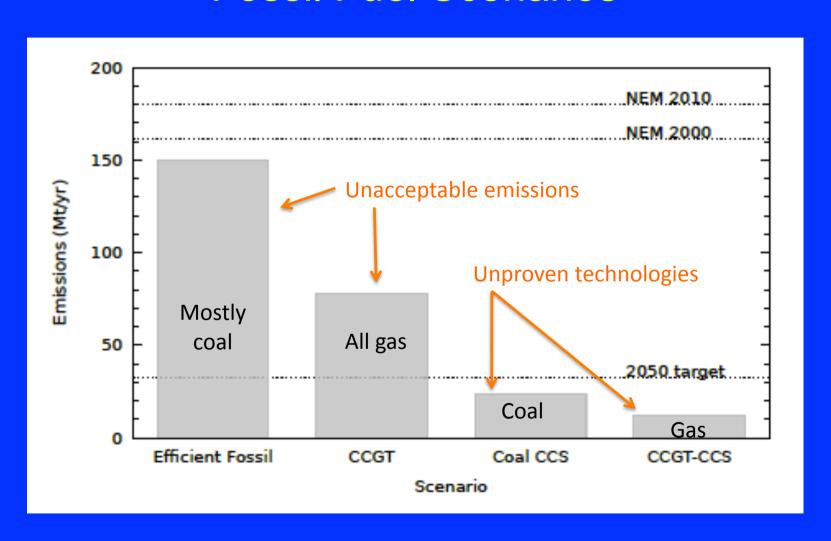

Note: Variable RE contributes two-thirds of annual energy and reliability is maintained!

Technology costs projected to 2030 by BREE (2012). GT is gas turbines burning renewable fuels; CST is concentrated solar thermal with thermal storage.

Meeting Demand without Base-load Stations

Traditional concept: With base-load power stations

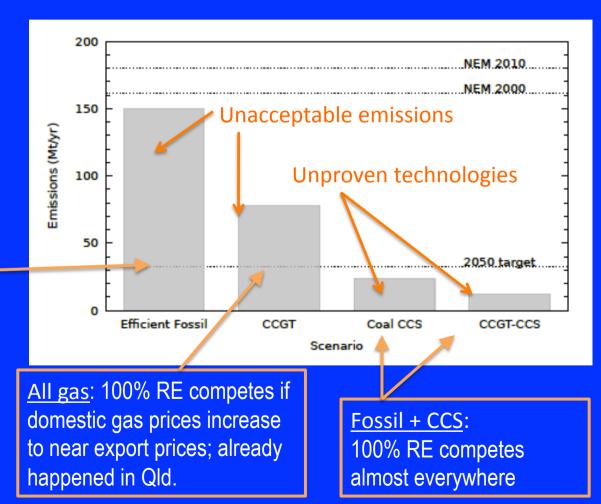
New concept: No base-load power stations


Meeting Demand without Base-load Stations

- Renewable electricity supplied by mix of variable plants (wind and PV without storage) and flexible/dispatchable plants (CST with thermal storage, hydro with storage, biofuelled gas turbines)
- * Flexible plants (together with improved weather forecasting) balance the fluctuations in power output from inflexible plants
- Demand management in a 'smart grid' can also play an important low-cost role.
- ★ Key parameter is reliability of the whole supply-demand system, not reliability of individual technologies. Reliability criterion satisfied in all simulations: unmet annual energy < 0.002% of annual demand</p>

UNSW's Four Comparison Scenarios None in AEMO (2013) study

- Most efficient commercially available fossil power stations (no CCS);
 GHG emissions still 81% of existing system unacceptable!
- 2. All gas (no CCS), base-load combined cycle and peak-load open cycle; GHG emissions 40% of existing unacceptable!
- Base-load coal with CCS (unproven technology) + peak-load gas turbines
- Base-load gas with CCS (unproven technology) + peakload gas turbines


Annual CO₂ Emissions from 4 comparison Fossil Fuel Scenarios

Summary of Results: Economics of the Four Fossil-Fuelled Comparison Scenarios

CCS is hypothetical carbon capture and storage; CCGT is combined cycle gas turbine

Efficient fossil:
100% RE competes
either if CO₂ price is
\$50-100 per tonne, or
fossil subsidies of
\$10 billion p.a.
transferred to RE

Busted Myths about Renewable Energy

- Myth: 'Renewable energy cannot provide base-load power.'
 Myth is based on false notion that base-load demand must be supplied by base-load power stations BUSTED
- Myth: 'Renewable energy is too variable or intermittent to make the predominant contribution to grid electricity supply – BUSTED
- Myth: 'Coal-fired power stations must run continuously as backup' – BUSTED by both experience (eg, SA) & simulations
- Myth: 'Renewable energy is too expensive' BUSTED
- Myth: 'Renewable energy is too diffuse to run an industrial society' BUSTED
- Myth: 'Renewable energy is still immature' BUSTED

Policies needed in Australia

- Set stronger greenhouse targets
- * Re-introduce a carbon price, preferably as a tax rather than ETS
- * Terminate subsidies to production & use of fossil fuels (\$10B+ p.a.).
- Increase RET for 2020 and set much higher target for 2030
- Keep ARENA & CEFC
- Ensure that fair feed-in tariffs are set. In 'smart' grids, these could vary with supply and demand
- Upgrade transmission system for large-scale RE: priority SA-NSW link
- * Expand seeding grants for community renewable energy projects
- * Expand energy ratings for buildings, appliances & equipment; mandatory energy labelling and energy performance standards

Additional Energy/Climate Policies suggested for Victorian Gov't

- * Further extend and expand the Victorian Energy Efficiency Target with policies to cut primary energy demand by at least 20% by 2020
- * Remove extreme restrictions on wind farms
- * Ban new coal-fired power stations, coal mines and coal exports
- Restore 20% emissions reduction target (in absence of national carbon price); develop and implement a strategy for zero emissions by 2050
- Set target for renewable electricity equivalent to pro rata national RET of 41 TWh per year in 2020 and at least double that by 2030
- * Restore requirements for Government agencies to purchase green electricity

Hepburn Community Wind Farm

near Daylesford, central Victoria

- Community projects were foundation in Denmark & Germany
- Hepburn is Australia's first mediumscale community RE project
- 2 turbines, 4.1 MW total
- Cooperative with about 2000 members
- \$9.6M from members +\$1M Vic gov't grant + \$3M loan
- Revenue returned to members and local community trust fund
- Spin-off group Embark is facilitating other community projects in Australia

See <hepburnwind.com.au>

Further Information

Research papers & non-technical articles

http://www.ies.unsw.edu.au/ our-people/associateprofessor-mark-diesendorf

New book

Sustainable Energy Solutions for Climate Change, UNSW Press and Earthscan, 2014

Mark Diesendorf SUSTAINABLE **ENERGY** SOLUTIONS for climate change