

Integrating Renewables into the Grid

Applying MW Scale Energy Storage Solutions for Continuous Variability Management

John Wood

Why Is Storage Important?

UltraBattery®

UltraBattery[®] Technology

UltraBattery®

The New Dimension in a Lead Acid World

Starter Motive Standby PSOC **UlirgBattery** New Lead-Acid **Battery** Battery **Battery** Market Size: Market Size: Market Size: Market \$15**B** \$3.5B \$6B State of Charge 100% -80% -20% 0% 1881 1960 1980 Today

Ce ecoult energy storage solutions

UltraBattery®

The New Dimension in a Lead Acid World

High Efficiency in Partial State of Charge Use

energy storage solutions

Direct Renewable Enhancement

Hampton Wind Farm Wind Smoothing

Electrical Single Line Diagram

Of Hampton Wind Farm Energy Storage System

Smoothing

Of Wind Output and Ramp Rate Reduction

Hampton Wind Farm: Smoothing of Wind Power and Ramp Rate Reduction 28 September 2012

PNM Prosperity Project

Solar Smoothing & Shifting/Firming

Enhancing Diesel/ Renewable Minigrids

Microgrid Diesel Efficiency

Typical Diesel Generator Efficiency Curve

Single Diesel

Fuel Efficiency Curve

Single Diesel

PSoC UltraBattery® Cycle

Single Diesel

Adding Renewables

48 hours

Fuel Efficiency Curve

Adding Renewables

Adding Renewables

PSoC UltraBattery® Cycle

Match Renewable Power Manage Renewable Variability	
Diesel Consumption	- 50%+
LCOE	- 30%
CO ₂	- 50%+
Diesel Longevity	2.5X
Battery Replacement	2.5X

24hrs

i 48hrs

Multi Gas Diesel / Renewables

Fuel Efficiency Curve

Multi Gas Diesel / Renewables

PSoC UltraBattery® Cycle

200

7 days

Multi Gas Diesel / Renewables

Mini Grid

Frequency Regulation

VAR Correction

Spinning Reserve

Microgrid Diesel Efficiency

Microgrid Diesel Efficiency 3 Day Cycling

Microgrid Diesel Efficiency 3 Day Cycling

String Voltage String⁵[‡], 2, 3, 4 Voltage 9/09/2018 9:00:00 10/09/2018 0:48:45 10/09/2018 16:37:30 11/09/2018 8:26:15 12/09/2018 0:15:00

Telstra Microgrid Diesel Efficiency 3 Day Cycling

String Current 12.5 String 2 de la com M---String 1 -12.5 String 4 M -37.5 String 3 9/09/2018 9:00:00 10/09/2018 0:48:45 10/09/2018 16:37:30 11/09/2018 8:26:15 12/09/2018 0:15:00

Current Projects

Hydro Tasmania – King Island Renewable Integration Project (KIREIP)

Renewables Integration and Diesel Reduction

Hydro Tasmania - KIREIP Project

King Island Renewable Energy Hydro Tasmania Integration Project (KIREIP) Australian Government Department of Resources asmania Overview The power of natural thinking Easyry and Tearloss Explore the peopleThies **Renewable** generation Thermal generation **Enabling Technologies** 2011-12 Diesel 2008 ninterruptable power 96.kW upply to allow periods of Solar PV 100% RE to meet load Existing diesel 2012 lodesel **Diesel UPS** engines Solar photovoltaic array 6 MW total trial **Diesel generators** 2008 Resistive frequency control **Resistor bank** 2013 1998 2003 Wind farm 3Wind 2Wind turbines turbines expansion 2012-13 Update Station Station operator up to 4 MW 750 kW 1700 kW controller Interface Energy storage technology Station control Wind farm New developments 2012-13 Smart Grid Smart Grid - demand side management

PJM Frequency Regulation Regulation Services

* The project is supported by funding from the U.S. Department of Energy under the Smart Grid Storage Demonstration Program.

Regulation Services on PJM

RETURN

Regulation Services on PJM

RETURN

Regulation Services on PJM

RETURN

Combining Functions to Make Storage Economics Compelling

Dual Purpose

Reserve Capacity

Conventional Battery on Float

Reserve Event

Battery in Partial State of Charge

Reserve Event

PJM Frequency Regulation Regulation Services

Multi-Purpose Storage System

Storage Facility #2:

100 kW Frequency Regulation

250kW UPS/Back-up

Multi-Purpose Storage System

Storage Facility #3:

200 kW Frequency Regulation

200 kWh Demand Management

200 kW UPS/Back-up

Economics Multi Purpose vs. Regulation Service

Infrastructure and connection costs in place

MULTI PURPOSE Marginal cost to increase size of battery store
+ slightly larger footprint

IRR based on marginal cost of UltraBatteries
and additional space required

UltraBattery Projects

*Courtesy of Furukawa Battery

Thank You

John Wood, CEO

www.ecoult.com www.ultrabattery.com

Integrating Renewables into the Grid

Applying MW Scale Energy Storage Solutions for Continuous Variability Management

John Wood

