Living with Floods: History, Prospects and What To Do

Dr. Barrie Pittock
Hon. Fellow CSIRO
Climatologist, Author &
Jamie's Dad

Synopsis

- Climate change context
- Changes in extreme events
- Recent floods with consequences
- Warnings unheeded
- Risk management
- Dealing with floods
 - Gilbert White's 8 forms of adjustment
- What to do?

The nub of the problem

- Huge fossil CO₂ emissions
- Rapid CO₂
 exchange
 between
 atmosphere,
 biota & upper
 ocean
- Slow natural sink
- Need to equalise emissions & sinks
- Need reduced emissions & increased sinks

Global Warming is Real!

Black lines: decadal averages of observations

Blue band: 5-95% range 19 simulations from 5 climate models using only natural forcings

Red band: 5-95% range for 58 simulations from 14 climate models using natural and anthropogenic forcings

Why More Extreme Rainfall?

- Over ocean warmer water and air
 - —> more evaporation
 - -> more humid air
- Where uplift occurs (convective storms or flow over mountains) get more condensation & release of more latent heat
- ◆ This strengthens convection —> more intense rainfall

Global natural disasters 1980 – 2008

Geophysical (red), meteorological (green), hydrological (blue), number of events (Munich Reinsurance data)

Floods in the UK, June-July 2007 Largest flood loss ever!

Rainfall 1 June - 22 July 2007 Percent of long-term average (1971-2000)

Overall losses: > US\$ 8 bn

Insured losses: US\$ 6 bn

Recent Australian Floods

- Kakadu, past decade wettest on record
 - > 2010-11: Open-cut flooded, runoff + g'd water
 - > Tailings dam flooded, operations ceased
 - > ERA response measures \$367 M
- Qld open-cut coal mines flooded
 - > Lost exports
- Other Qld flooding & loss of life
 - > Flash-floods, TC
- MDB flooding, including Victoria

Warnings re extreme rainfall

- ◆ Pittock & Hennessy, 1991: "these results suggest a possible environmentally significant increase in the frequency & severity of both floods & dry spells"
- Tucker, to RAC re Kakadu 1991: "the frequency of heavy rainfall may increase (with obvious implications for run-off, etc.)"
- Gordon et al., 1992: "If realistic,, the findings have potentially serious practical implications ... of an increased frequency and severity of floods in most regions"

% Change in Daily Rainfall Intensity (Gordon et al., 1992)

Climate Change and Extreme Weather Events (IPCC, 2007)

Phenomenona and direction of trend	Likelihood that trend occurred in late 20th century (typically post 1960)	Likelihood of a human contribution to observed trend ^b	Likelihood of future trends based on projections for 21st century using SRES scenarios
Warmer and fewer cold days and nights over most land areas	Very likely°	Likely ^d	Virtually certaind
Warmer and more frequent hot days and nights over most land areas	Very likely ^e	Likely (nights)d	Virtually certaind
Warm spells/heat waves. Frequency increases over most land areas	Likely	More likely than not ^f	Very likely
Heavy precipitation events. Frequency (or proportion of total rainfall from heavy falls) increases over most areas	Likely	More likely than not ^f	Very likely
Area affected by droughts increases	<i>Likely</i> in many regions since 1970s	More likely than not	Likely
Intense tropical cyclone activity increases	Likely in some regions since 1970	More likely than not ^f	Likely

Post IPCC 2007 Warnings

- Alexander & Arblaster, 2009:
 - "Multiple ... climate models [for Australia show] a shift towards ... much longer dry spells interspersed with periods of increased extreme precipitation..."
- Min et al., 2011
 - "Changes in extreme precipitation .. may be underestimated because models seem to underestimate the observed increase in heavy precipitation with warming."

Risk Management

- ◆ Uncertainty → probabilistic risk
- Risk = probability x consequences
- Extreme events have "return periods" which change when climate changes
- Investors & governments both need to take risk into account
- Sovereign risk': govt. changes rules?
- But Nature is the real 'sovereign'
- So need to heed scientific advice & anticipate risk

Gilbert White, 1911-2006: "father of floodplain management"

- Ph. D. Thesis 1942: "Human Adjustment to Floods"
- Prof. of Geography & Director, Inst. of Behavioural Science, Uni. of Colorado
- Founder Natural Hazards Research Center, U. of C.
- Quaker, chaired Amer. Friends Service Committee
- President, Sci. C'ttee on Problems of Environment (ICSU), 1976-82

Gilbert White's Eight Forms of Adjustment

- 1. Elevating land or buildings: a permanent solution, but costly
- 2. Abating floods by land treatments: eg., decrease upstream erosion & runoff, fire control, & tree plantings
- 3. Protection via dams, diversions & levees: 'obvious', 'easy', but environmentally & economically costly, & may increase exposure to larger extremes
- 4. Emergency warning & evacuation; good if timely and efficient

White's Adjustments, cont.

- 5. Structural changes to buildings & transport: reduces losses & safeguards essential services
- 6. Changing land use: prevents loss of vulnerable investments not appropriate to flood plains, esp. urban developments
- 7. Distributing relief: essential if other adjustments inadequate; can be repetitive
- 8. [Compulsory] insurance: should require systematic identification of risks & incentives to adopt other measures

Gilbert White Summary

".. it will be necessary to adopt a broad geographical approach ... [that will] demand an integration of engineering, geographic, economic, and related techniques. The solutions will call for a combination of all eight types of adjustment, judiciously selected with a view to the effective use of flood plains."

What to Do?

- Adaptations:
 - Heed warnings
 - Take broad range of measures
 - Anticipate large costs and limitations
- Mitigation (tackling the root causes):
 - enhanced GH effect
 - uncontrolled growth
 - inappropriate technology
- Reduce GH gas emissions:
 - Show how, get international action,
 - Seize opportunities: energy efficiency, renewable energy - need incentives and startup initiatives – eg. national electrical grid, cf. DESERTEC
- Engineers have a key role

DESERTEC: Energy, Water and Climate Protection

Desertec Industrial Initiative (DII)

12 companies signed a Memorandum of Understanding to establish a Desertec Industrial Initiative (DII) in 2009.

The objective of this initiative is to analyse and develop the technical, economic, political, social and ecological framework for carbon-free power generation in the deserts of North Africa.

Q. Why cannot Australian companies do this here?